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A one-dimensional interacting particle system with a stochastic dynamics is 
studied in the local mean field limit, extending the results of Lebowitz, Orlandi, 
and Presutti to processes which satisfy detailed balance (with respect to Gibbs 
measures). The behavior of the system below the critical temperature and inside 
the unstable (spinodal) region is then investigated by means of computer 
simulations. The experiments clearly indicate the presence of phase separation 
and confirm the validity of some conjectures on the dynamics of the spinodal 
decomposition. 
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1. THE PROBLEM 

In this paper I extend the results proven in ref. 6 for a nonreversible par- 
ticle model to its reversible version, introduced in Section 3 of ref. 6. This 
describes a jump process on a lattice gas with the exclusion condition 
[-i.e., t/(x, t), the particle number at site x and time t, is 0 or 1 ]. The jump 
intensity from x to x + b (b = _+ 1) is given by 

c(x, x+b; q ) - - ~  [r/(x)(1 - r / ( x + b ) ) ]  exp - [g . / ( r /x ,x+b)-g~(r / ) ]  

(1.1) 

We use the same notation as in ref. 6. H~(~) is the Hamiltonian 
with pairwise interaction V~(ix-yj) and V~ is a Kac potential, 
V.e(tx-yl) = 7V(7 I x -  Yl ). The choice (1.1) makes the evolution reversible 
with respect to the Gibbs measure with potential V 7 and inverse tern- 
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perature (k/3) 1 (k is the Boltzmann constant). The process is a Kawasaki 
process with Hamiltonian H~. In the limit 7--+ 0 Lebowitz and Penrose 
have proved (7,s) that, if the integral of V is negative (we assume that 
V is regular, and L1), there is a phase transition, in the sense of the 
van der Waals Maxwell theory, namely that there is a critical value tic, and 
for /~ >/~c the infinite-volume free energy has a limit for 7 ~ 0 which is 
still convex, but not strictly convex. The phase transition region is the 
interval [A, B], with A and B, respectively, given by 1 / 2 -  u* and 1/2 + u* 
[u* given by (4.4)], and the unstable region is [a, b ] c  [A, B], with a 
and b equal to I F and I ~ - [ I ~  are given by (2.1e)]. I shall consider an 
initial measure p~, which is a product measure whose average occupation 
numbers vary on a scale e - t ,  and a lattice F" of size 2e -2, so that, in the 
limit e ~ 0 ,  it is infinite also in macroscopic units (e-t). I will choose 
7 = e  I ~ so that the macroscopic scale ~ ~ is much larger than 7 -1, the 
range of interaction. 

In the next section I will state the theorems that prove that at time 
O(e -2) propagation of chaos holds and the average density converges to 
the nondegenerate equation found in ref. 6, if the initial density profile does 
not intersect the spinodal region. In Section 3, I sketch the proof of this 
theorem and in Section4, I present some computer simulations on the 
behavior of a similar model in the spinodal region. 

2. R IGOROUS RESULTS IN THE H Y D R O D Y N A M I C  L IMIT  

We shall see that the system has a diffusive behavior described by the 
nonlinear partial differential equation 

where 

and 

O-~P(r't)=O [ D ~ ( p ( r ' t ) ) ~ r ( r ' t ) ] o t  ~r 

p(r, O) = po(r) ~ ~ ,  Vr ~ R 

1 --~p(1 D~(p)=~ -p) 

f: ;? I =  2rV'(r) dr = - 2  V(r) dr 

([0, I~-)u (I~, 1] 1/2] if 

I F  + 1 1 /1 4 

t. [0, 13 if 

>>- ~c = 4/1 

f l < f l c = 4 / I  

(2.1a) 

(2.1b) 

(2.1c) 

(2.1d) 

(2.1e) 
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To have a better insight into the meaning of this result in connection with 
equilibrium statistical mechanics, see Section 1 and Fig. 1 (Section 4) of 
this paper, and Section3 of ref. 6. As in ref. 6, we assume that 
po(r) ~ C~(R)  with uniformly bounded derivatives and for each e > 0 we 
consider the function fi;(r) (]r I ~<e-1) which is also C ~ in ]rl ~<e-~ with 
periodic boundary conditions having also uniformly bounded derivatives. 
We also require that ~o(r)=po(r) for all r such that Irl ~<e -l .  We assume 
that the process starts from #; ,  which is a product measure on 
X = { 0 , 1 } r ~ , F  ~ = [ _ ~  2, e 2 ]c~Zwi th  

/~;({r/(x) = 1 }) = fi;(ax) (2.2) 

We have the following: 

T h e o r e m  2.1 (Propagation of chaos). Given Po, P~, /~;, and 
= e ~ -~ as before, there is c~ (sufficiently small) such that for all n and for 

all z e R  + 

lim sup ~ t/(xi, ~ - 2 r ) -  ~(exl, ~) =0 
8 ~ 0 X l , . . . , X  n i i =  1 

(2.3) 

the sup being taken over n different sites of F ~, and )~(exi, ~) is the solution 
of (2.1) with initial condition r periodic over the whole R and of period 
2~ 1. Furthermore, ~;(r, r) ~ p(r, t) uniformly on the compacts and faster 
than any power of e. 

For fixed 6 e (0, 1) we define the averages 

M(x, t, ~-~) - ~ E [ ~ ( y ,  t) - p(~y,  &)] 
] y - - x l  ~< e - a / 2  

We have: 

T h e o r e m  2.2 (With the same notation as in Theorem 2.1). For all 
6 E (0, 1) there is ~ > 0 such that for all ~', V'(0 < z' < r") and for all R e R + 
we have 

lira P , ;  sup sup [M(x, t, e-a)[ > ee) = 0 
~ 0  .c, < a2t < z,, ixl ~ - I R  

(2.4) 

and the convergence m (2.4) is faster than any power of e. 
The two theorems above extend the result in ref. 6 to the process 

generated by L~. The extension of the proofs presents a few nontrivial 
points, as briefly sketched below. 
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3. S K E T C H  OF T H E  P R O O F S  

In this section I lean heavily on refs. 2, 3, and 6. The proofs of 
Theorems 2.1 and 2.2 are based on short-time estimates on the functions 

v,(_x, tlv/) = E; (q(x,, t)-p(x,, t)) (3.1) 

where E; denotes the expectation over the process generated by L~ [given 
explicity in (3.3) ] and starting from t/, x e JCZn - { (x 1,..., x n) ]xi r xj V i r j }, 
and the density p(x, t) is the solution of the discrete differential equation 

Op (x, t) 1 fl 2 V~ { at =~Alp(x, t ) -~y  p(x-  1, t)[1 -p(x, t)] 

x S p ( x -  1 +r, t)s(r) P ' (r)-p(x ,  t)[1 - p ( x -  1, t)] 
r 

• y p ( x -  r, t) s(r) P'(r)} 
r 

(3.2) 

with tt(x) as initial condition { ( V ( f ( x ) =  +_[f(x+l)-f(x)]) and 
A1 =V~-V~)}. The generator L~ of the dynamics [see LN defined in (2.6) 
of ref. 6 with c(x, x + b; ~I) given by (1.1)] can be rewritten with little effort 
a s  

1 
L ~ f ( r / ) = ~ Z  ~ {~l(x)[1-tl(x+b)]} 

x b = + l  

• s(r)P'(r)}[f(qx'x+b)--f(rl)] 
r 

where 

(3.3a) 

and 

t O: iT;'r 1 ir 
~"(r) = if r = O, 1 

( 7 -  i y( )]r'=--r if r < 0  

(3.3b) 

s ( r )=  { - 1  if r ~ 0  
+1 if r > 0  

Notice that in the limit e --+ 0 (hence y --+ 0) we have V'(r) ~ dV/dr'lr,= I,k" 
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If we choose a very small ~/, we can expand L~ in powers of ~, up to the 
first order, 

L~ ~ L o + L/71) (3.4a) 

1 
L~,I)=SE Z ~1(x)[1-~l(x+b)] 

x b = •  

X {--f12 72 E V'(yr) s(r)31(x+br)}[f(~lx'x+b)-f(q)] 
r 

1 1) 
LofO/) = ~ 2 [f(rl x'x + - f ( r / ) ]  (3.4b) 

x 

Lo is the generator of the simple exclusion process. (9~ The case of a system 
with generator given by L 0 + L~ 1~ with the choice 

V(r )=2(r -  1) 1{~.<,~ (3.5) 

is considered in ref. 6. We give the following: 

Proposit ion.  

sup 
X ~ . / c f  n 

Given 2 > 2~, for all n there is cn such that 

Iv~,(x, t]~/)[ <~cnt -"/8 Vq, Vt<<.e -2+;~ (3.6) 

The proof of this proposition is one of the central points in the proofs 
of both Theorems 2.1 and 2.2. From now on we will omit the dependence 
of the v-functions on ~/. We fix n and start from the formula 

i = 1  

0p 
- ~ v n_ l(_x(i), t) ~7 (xi' t) (3.7)  

i = 1  

[_x(i)-(xl,. . . ,xi-l,xi+l,. . . ,x,,)eXgn l]. If we define 

1 LUV(.)-~E Z .(x)El-.(x+b)] 
x b = + l  

• 2 ~- . i x  + br) s(r) ~-'(r) 

x [f(~/x'x + b) -- f ( r / ) ]  (3.8) 
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[m* will be chosen in (3.14)] and 

R{?~*)=L~-Lo--L{~)-L -~ 

Using (3.7), we can write 

(3.9) 

d ~(~)(" t) + ~tvn(_x, t)=Lovn{x, t)+ 7s]"}(_x, t ) +  --m*t~-~, E• 

i = 1  

(3.10) 

in which Lo acts on x and the ~rs are functions of v,,, with m varying in 
a subset that will be specified below. The first two terms in the right-hand 
side of (3.10) derive from the action of Lo and L~ 1) and from the last term 
in (3.7). As we have seen, they are obtained by expanding to first order the 
exponential in (3.3a) and they are the only terms present in the case of 
ref. 6. Furthermore, 

f t[j(n)(~,, e ~L!m*) 
m , ~ , _ ~  ~ E. t) f[ [r/(x/, t)-p(xi, t)]} (3.11) 

i = 1  

We have 

i = 1  

By integrating (3.10), we have 

vn(_x, t)l <<. f]Ex(~P]n)(x(t-s),s) 7J(')~"D-s),s)) +c7 m*+~t (3.13) 

m which Ex is the expectation taken over the simple exclusion process (for 
labeled particles, ref. 2). Because t~< e-z+x, by choosing 

(3.14) 

we have that 

7 m* + It ~ t ./'8 (3.15) 

and so we have reduced our task to the estimate of the first term on the 
right-hand side of (3.13). In order to obtain the bound (3.6), we iterate 
(3.13), by replacing the v,,-functions (contained in the ~ s )  by the same 
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integral expression (3.13), m* kept fixed during the iteration. After M 
iterations we obtain a sum of M-fold integrals of all the branches of the 
iteration. 

Now we observe that g']"') and w(,,') --m* are functions of v,, respectively 
with me{max(0 ,  n ' - 3 ) , . . . , n ' + 2 }  and me{max(0 ,  n ' - m * - 2 ) , . . . ,  
n' + m * +  1 }: owing to the presence in the ~ s  of v,,-functions with both 
m>>.n' (birth terms) and m<n'  (death terms), after M iterations, while 
some branches have reached Vo = 1, some other branches still have correla- 
tion functions with strictly positive order. As in refs. 3 and 6, we need to 
choose M properly in order to obtain (3.6). 

The idea of the proof is to show that the terms that we find are either 
those found in ref. 6 or smaller than those. As already mentioned, ~u],') 
collects all the terms present in ref. 6. The terms ~" ' )  can be written as the 
sum of two terms; one is just due to the simple exclusion and it survives 
even when there is no interaction (V= 0); the other one is the expectation 
of A ("'), when A In'/ is a linear combination of products of factors of the 
form O(x~, t)= rl(x~, t)-p(x~,  t). There are two important features in this 
structure; one is the presence of characteristic functions stating that some 
of the sites x~ and xy appearing in the products are nearest neighbor sites; 
the other is that some of the terms have the structure of discrete 
derivatives. The extra terms have the structure 

y2 ~ q(x +r)s(r) ~"(r) A (n') (3.16) 
r 

where 1 ~< q ~< m* - 1 and 

1 

We can write in (3.13) rl(y, t)= Fl(y, t)+ p(y, t) and expand the qth power 
of the square bracket. The generic term in this expansion is 

7 2q 2 O(x-l-rl, t)...O(x+rg, t) p(X+rk+l, t) . . .p(x+rq, t) 
r 1 , . . . ,  rq  

x s(rl) P'(rl) . . .  S(rq) ~'(rq) (3.18) 

When the arguments of the O's are all distinct and different from those in 
A(n'), then they produce an increase of the order of the correlation function; 
since there are essentially y - i  terms in each sum, overall (3.18) produces 

8 2 2 / 6 5 / 1 . 2 - 1 5  
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a factor 7 q and increases the order of the v-function. If there are coinciden- 
ces, the order of the v-function is smaller than the previous one, but each 
unit it decreases, there is an extra 7 factor, because the value of the corre- 
sponding site x + ri is constrained to be one of the other x + rj, or one of 
those in A (n') (since the order of the v-function is finite, there are finitely 
many such choices). Therefore the contribution to (3.16) coming from the 
terms A(n')in A (n') is reduced to terms smaller than those present in the case 
of ref. 6 and with v-functions of not smaller degree. 

The problem comes from the second term in (3.17), which was not 
present in ref. 6 and where one of the 0 factors is missing. The terms (3.18) 
might not replace it, because there is a term in (3.18) with only p's. 
But q~>l and for q = l  this term is of the order of 7: by (3.2), 
] t?p/c?t- (1/2) .Alpl  =O(7  ), so that we have a term 7 2 associated to the 
decrease by one unit of the order of the v-function. The time integral is 
bounded by ct 2 < c7-2 (because 2 > 2e), so that overall the loss of one unit 
in the order of the v-function does not contribute a converging factor up 
to the estimate (3.6). However, by a more carefull analyse of (3.2), one can 
see that I ~ p / ~ t - ( 1 / 2 ) . A l p ]  =O(7) (1 /x / t ) ,  so that the time integral is 
bounded by c x / t < c  7 1 and we indeed gain a factor 7 <  t 1/8 which 
compensates the loss in the order of the v-function. Also for the other 
terms, similar estimates work and in this way we reduce the proof to that 
in ref. 6 and in turn to that in ref. 3. 

Now observe that we prove (3.6) with the time derivative of p given 
by Eq. (3.2), i.e., for the first-order expansion in 7 of the equation that we 
obtain assuming propagation of chaos: once we prove (3.6), the only dif- 
ference between this case and that of ref. 6 is the generality in the choice of 
the potential V. So the other steps of the proof are the generalization of 
Sections 5-7 of ref. 6. In particular, we must repeat the parametrix method 
with Eq. (3.2). There is nothing drastically new, so we omit the details, for 
which we refer to ref. 5. 

4. C O M P U T E R  S I M U L A T I O N S  A N D  PHASE S E P A R A T I O N  

For computer simulations it is more convenient to study another 
model whose relation with that introduced in Section 2 is discussed in 
ref. 6. This model assigns to every particle a velocity (_+ 1). The particle 
configurations are denoted by ~, ~ = {~(x, a ) : ~ ( x , a ) E  {0, 1}, x ~ F ,  
o-(x)= _+1}. To compare the results in this model to that considered 
in the previous sections, we define the occupation number at x as 
~ (x )=  [~(x, + 1 ) +  ~(x, - 1 ) ] / 2 .  In every site of F (an interval of Z with 
periodic boundary conditions) there are at most two particles (with 
different velocities). The dynamics is defined in two steps: 
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(1) Velocity flips. If there are two or no particles in the site x, then 
nothing happens. If there is one particle, its velocity a'  takes the values + 1 
or - 1 with probability p and 1 - p (resp.) with p given by 

p = ~  l+f17 2 ~ ( ~ , ( x + r , t ) - ~ ( x - r , t ) )  (4.1) 
r = l  

(2) Advection. Every particle at site x moves to x +  a'(x). 

From now on we choose 7 such that 7 ~ is an integer, /?>2, and 
initial density profiles have values in the interval [ IF ,  I~- ], cases which are 
not covered by Theorems 2.1 and 2.2. 

To explain the computer simulations, we introduce the empirical 
densities 

l i =  + l  

t~,(x, t) - y '  ~(x + i, t) (4.2) 
21+ 1 i= -z 

Typical lengths in the system are the lattice spacing (equal to 1)7-1, the 
interaction length, and e- l ,  the hydrodynamic spacing. We shall consider 
values of I either in the range 1 ,~ l < 7 i or 7-1 < l <~ e-  ~ and we shall see 
that some of the results change dramatically from one scale to the other. 

On the other hand, if we reach a stationary or an almost stationary 
situation, we can observe the system by doing time averages 

| T 

-T X ~ r  (4.3) 
PL( , t ) = T + l / = o  

at least for suitable T. 
The purpose of our experiments is to investigate the following points: 

(1) Phase separation, growth of clusters, and their spatial patterns. 

(2) The values of the density of the clusters versus the temperature. 

(3) Hydrodynamic equations in the spinodal region. 

(1) Computer simulations show (see, for instance, Fig. 2b or Fig. 6b) 
that the system separates into clusters with respectively high and low 
densities close to 1/2 + u*, where u* is given by 

/1  + 2u*'~ 
(4.4) 

These values (we will call them, respectively, B and A) are exactly the den- 
sities of the two pure phases of the model in equilibrium at the critical 
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chemical potential. For further details we refer to Section 3 of ref. 6 and to 
Fig. 1. Recall that the hydrodynamics in the metastable region [A ~< p ~< I~- 
( = a )  and ( b = )  I~ ~<p ~< B] is diffusive and that we are studying, by com- 
puter simulations, the unstable region of the model at equilibrium. We next 
examine the question of pattern selection when escaping from P0 - 1/2. We 
expect this solution to be unstable and, after a certain time, the system 
should glue together into clusters. There are some conjectures on this case. 
Assuming propagation of chaos, we see that the evolution of the average 
occupation numbers [call it p(x, t)] can be described by the equation 

1 
(~iO (X, t) = ~ .if 1 p(X,  [) -- f l ~ 2 g l  
at 

x p(x,t)[1-p(x,t)] ~ [ p ( x + r , t ) - p ( x + l - r , t ) ]  (4.5a) 
r = l  

In the limit ?--* 0 this equation is close to (3.2), with the choice (3.5). The 
eigenvalues of this equation, linearized around Po = 1/2, are 

" 2 / k \  2 [sin2 (~7)  1 ( 4 . 5 b )  -2s,n tS) 

First we consider the case IFI =aT ~ with a >  1 and such that a? -1 is an 
integer. In this case the wave numbers are 

k,  - 2~?n (n = 1 ..... a7-1) (4.6) 
a 

D3(Pt ' 

~\ i  • TM 

" ~ ~  

m 
A 

Spinodal region 

,~= If 

N 
\ 

/ 
r 

~'"~" ~ J i / " / " / /  / 

"gl 

1 p 

Fig. 1. Plot of the diffusion coefficient Dtdp) with fl = 3 >/~c = 2 ( I =  2). The values a and b 
define the unstable (spinodal) region (see Section 3 of ref. 3) and they are equal, respectively, 
to 13 and I~-. A( = 1/2--u*)  and B =  (1/2 + u*) are defined in (4.4) and I#  in (2.1e). 
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and we see that P0 = 1/2 is not linearly unstable for all values of/3 >/3~. = 2. 
This is due to the finite size of the space (in the scale 7 1): if we let 
a ~ oe, Po - 1/2 is linearly unstable for all/3 >/3c- With the choice of a = 4 
(and in the limit 7 ~ oe) we have that for /3 < n2/4 there is no positive 
eigenvalue. For n2/4 <<./3 <~ n2/2 there is one positive eigenvalue and for 
/3>n2/2 there are two positive eigenvalues. On the other hand, for 
n2/4 ~< fl < 3n2/4 the greatest eigenvalue is reached by the first harmonic 
I n =  1 in (4.6)] and for /3>3n2/4 is reached by the second harmonic 
(n=2) .  In this way we understand Figs. 2 and 3. We clearly see a 
sinusoidal shape, corresponding to the greatest eigenvalue, growing and 
then getting distorted when nonlinear effects become sensible, which agrees 
with the typical patterns of phase separation. ~4~ Some theoretical considera- 
tions suggest that the time scale of escaping should be ;~-2 log 7 1 and the 
Simulations agree with this conjecture. 

(a) 1,00 

P 

0.80- 

0.60- 

0.40- 

0.20- 

0.00 
i i ~ lOqO0 12JO0 4 ~ 16J00 ~ z 200 400 600 800 1 O0 1800 2000 
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0 ,0292  
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0 .3214 
1.0947 

(b) 1.00- 

P 

0.80- 

0.60- 

0.40 

0.20- 

0,00- 

C- 

n ~  

1 354 .1159  
2 0 .0305 
3 18 .4266  
4 0 .1240  

6 0,0215 

I 8 0,2273  007s ~ 

11 0 .1042 

13 0 .2095  
14 0 .1755 
15 0 .3136  

200 400 600 BOO 1000 1200 1400 1600 1800 2000 

Fig. 2. (a) IF] =64-32,  7 - t =  16-32 (so ]F] =4~ 1), f l=  5. We give the initial condition 
(graph 1: thin line) and the situation after 6-105 iterations (graph 2: thick line). The average 
is taken over a length l =  32. In the boxes we give also the Fourier transforms, ~(n)= 4000 
IZf=t p(x) exp(k,x)l 2, where k, is given by (4.6) (b) As in part (a), but after 2.106 iterations. 
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(a) 

(b) 

0.80 

0.60 

0.40 

0.20 

0.00 
0 200 400 600 800 1000 1200 1400 1600 1800 2000 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

Fig. 3. (a) bF[ =64-32, 7-1= 16.32 (so IF] =47 1), /3=20. We give the initial condition 
(graph 1: thin line) and the situation after 6.105 iterations (graph 2: thick line). The average 
is taken over a length l = 20. (b) As in part (a), but after 5 - 106 iterations. 

On  the other  hand,  if we consider the case of IFI >>7 i (as in the 
hydrodynamic  regime) we easily see f rom (4.5b) tha t  the greatest  eigen- 
value, for the values of fl that  are considered, corresponds  to k ~-nT. Since 
the escape is domina ted  by the wave n u m b e r  nT, we expect again that  the 
spatial  scale of var ia t ion of the density after escape is 7-1.  In  this case the 
spatial  pa t te rn  seems to have a more  complex evolution. The case with 
/3= 2.4 and IF] = 327 1 is listed in Fig. 5. In this par t icular  case we see 
f rom (4.5) that  the greatest  eigenvalue has n = 5 and we see that  the pat tern  
of escape has a spatial  s tructure with a periodici ty given essentially by n = 5 
(Fig. 5a). On  longer  times (Fig. 5b) some clusters have joined together  and 
the new wave numbers  of the system are a round  n = 3, i.e., they moved  
toward  smaller  k. A similar effect it is clear also in the case with /~ = 32 
in Fig. 4. This seems to agree with the belief tha t  actually the periodic 
s ta t ionary  solutions are all unstable,  except that  with the lowest wave 
number .  (4 
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( a )  1.00. 
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Fig. 4. (a) [FI = 5000, 7 - 1 =  80, fl = 3.2. The initial condition (not given) is Po---1/2. The 
density is taken after 1.5.105 iterations. The average length is l =  20. Here B = 0.95 (A = 0.05), 
from (4.4), and I~=0 .81  (1~-=0.19), from (2.1d). (b) As in part (a), but after 5-106 
iterations. Time averaged with T =  1000 [see (4.3)]. (c) A particular case of part (b). 
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Fig. 5. (a) IFI = 96.32, 7 1 = 3- 32,/~ = 2.4. We give the initial condition (graph 1: thin line) 
and the situation after 7.105 iterations (graph 2: thick line). The average is taken over a 
length l=20. Here B=0.83 (A =0.17) and 17 =0.70 (I~- =0.30). (b) As in part (a), but after 
2-106 (graph 1: thin line) and 7-10 6 (graph 2: thick line). 

(2) For values o f /~ />  5, the interval of  unstable densities is almost 
the whole  interval [0, 1],  so that the densities in the clusters are forced to 
be very close to 0 and 1. For such a reason these experiments are not  really 
decisive for concluding that the densities in the clusters are the same as 
those of  the two pure phases. Figure 4 shows the case with/~ = 3.2: in this 
case the densities look  the same as those of  the pure phases. For /~ = 2.4 
(see Fig. 5) the question is less clear. To  have a better understanding of this 
problem we consider the equation derived from studying the system in the 
case ~ = 0 (remember that 7 = el ~). 

It can be shown (see section 3 of  ref. 6) that, in this case, the behavior 
of the system is described, in the same sense as Theorems 2.1 and 2.2, by 
the integrodifferential equation (see Section 3 of ref. 6) 



Kawasaki Dynamics 231 

Op (r, t )=~ r  ~1 Op 0-i ~ ?-;r (r, t)--/~p(r, 011--p(r, t)] 

I +' } x s(r') p(r + r', t) dr' 
1 

(4.7) 

[We restricted ourselves to the case of (3.5), but this result is true for 
arbitrary choices of the potential, with obvious modifications in (4.7).] 

Dal Passo and De Mottoni (1) looked for stationary solutions of (4.7) 
in the set of monotonic functions such that 

- p (  - r )  + �89 = - �89 + p ( r )  (4.8) 

and such that p(r) - 1/2 > 0 if r > 0. They proved existence and uniqueness 
of this solution if and only if Eq. (4.4) has a strictly positive solution. 
Furthermore, they proved that [call p(r) the stationary solution] 

lim p(r)=�89 (4.9) 
r ~  _+co 

[u* given by (4.4)]. Nothing is known on the stability of this solution, but 
it should describe the temporal asymptotic behavior of the particle system 
(living in a space much greater than V 1: for example, 7 -2) starting from 
an initial condition given, for instance, by the step function that assumes 
values B for r ~> 0 and A for r < 0. It may be, however, that this solution 
does not describe the interface between the two phases in the case shown 
in this paper: the interfaces are too close and they can interact with each 
other. 

To understand the origin of (4.9), we argue as follows. A stationary 
solution of (4.7) satisfies the equation 

1 0p f+l  
~ 0--~--//p(1 - p) s ( r ' ) p ( r + r ' ) d r ' = C  (4.10a) 

--I 

Owing to the symmetry p(r)= 1 - p ( -  r) 

C = 0 (4.10b) 

By integration, (4.10) becomes 

fo ~ 1 0p 
2tip(1 - p) 0r 

R f + l  
dr s(r') p(r + r') dr' (4.11) 
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(R > 0). By taking into account some cancellations on the right-hand side 
of (4.10a), we have 

= p(r + r') dr' dr 
- p ( R ) ]  -~o 1 

( 4  R t "  1 

+ | | p(r + r')dr' dr (4.12) 
Om ax(R 1,0) ~0 

If we let R ~ + o% we get the condition 

(p(+oo) ] 
log 1 - p ( + o o ) ]  = 2 / ~ ( p ( + ~ ) -  1/2) 

which is (4.4). This result is easily extended to the case of a generic V(r). 
We can try to repeat the argument for the periodic stationary solu- 

tions of (4.7). Call L the period of a solution satisfying (4.8) and such that 
maxr p(r) = p(L/4) = 1/2 + u. If there exists a solution in this class, then 

1 + 2 u )  
log \1 - 2u/<~ 2flu min((L/4), 1) 

where the inequality is strict if we assume that the maximum is reached at 
an isolated point. Therefore we expect that if the system is close to one of 
these periodic solutions, then the densities of the clusters are, respectively, 
larger than A and smaller than B. The computer simulations do not give 
quantitative evidence on such questions. 

(3) We finally consider the problem that remained unsolved in the 
first three sections (and in ref. 6): the hydrodynamics in the unstable region. 
We refer to Fig. 6. We consider a nonconstant initial profile, varying on 
the scale e -1 (some 103), and with values in the spinodal region. We see 
that the system breaks up into clusters (Fig. 6b) of dimension O(7-1). 
To see this, we must take time averages [see (4.3)] or choose I ~ 7  -1 in 
(4.2). This linear dimension, in the hydrodynamic space scaling (7 = 41-~), 
is infinitesimal because the hydrodynamic regime is determined by the 
space scale e-1. If we average over a distance much greater than the dimen- 
sion of the clusters [in (4.2) take l=e -1+~' and ~'>c~, so 7 -~ ~ I ~ e - 1 ] ,  
we obtain a regular shape, reproducing identically the initial profile. As 
mentioned in ref. 6, results obtained for the Ginzburg-Landau model "1) 
and the Green-Kubo theory (1~ indicate that the diffusion coefficient 
should vanish in the phase transition region. This agrees with our 
experiments. 
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Fig. 6, (a) IF I = 300.32, ? t =  32, fl = 20. We give the initial condition (graph 1: histogram 
with average length l =  50) and the situation after 1 �9 106 iterations (graph 2: continuous line 
with l =  100). (b) A particular of the situation in part (a) (graph 2) time averaged with 
T =  100 [see (4.3)]. 
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